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In this work we extend the high-order discontinuous Galerkin (DG) finite element method
to inviscid low Mach number flows. The method here presented is designed to improve the
accuracy and efficiency of the solution at low Mach numbers using both explicit and impli-
cit schemes for the temporal discretization of the compressible Euler equations. The algo-
rithm is based on a classical preconditioning technique that in general entails modifying
both the instationary term of the governing equations and the dissipative term of the
numerical flux function (full preconditioning approach). In the paper we show that full pre-
conditioning is beneficial for explicit time integration while the implicit scheme turns out
to be efficient and accurate using just the modified numerical flux function. Thus the impli-
cit scheme could also be used for time accurate computations. The performance of the
method is demonstrated by solving an inviscid flow past a NACA0012 airfoil at different
low Mach numbers using various degrees of polynomial approximations. Computations
with and without preconditioning are performed on different grid topologies to analyze
the influence of the spatial discretization on the accuracy of the DG solutions at low Mach
numbers.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The system of the compressible Euler equations gets increasingly stiff at low Mach numbers and this behaviour, physi-
cally due to the large disparity of wave speeds, strongly influences the numerical solution of such equations. Well known,
undesirable effects of low speed flow on most numerical schemes include low convergence speed and loss of accuracy
[1–3]. Two further issues related to the numerical solution of low speed flows concern the choice of proper sets of unknown
variables (conservative variables are ill-conditioned at low Mach number, see [4]) and a careful implementation of non-
reflecting boundary conditions.

Several preconditioning techniques, applied to the governing equations and to their discretization, have been developed
in the past to cope with the stiffness and accuracy problems. These techniques basically modify the acoustic wave speeds
premultiplying the time-derivative terms of the governing equations by a preconditioning matrix. The resulting effect is that
the condition number of the inviscid flux Jacobian matrices is drastically reduced, and hence the convergence speed of time-
stepping or iterative procedures is significantly improved. For the large family of upwind schemes, preconditioning enters
also in the formulation of numerical flux functions in order to properly balance the artificial dissipation implied by the
numerical flux formulation [2,3,5]. Some of the most recognized local preconditioners for inviscid and viscous flows were
. All rights reserved.
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proposed by Choi and Merkle [6], Turkel [7,8], Lee and van Leer [9] and Weiss and Smith [10]. As the preconditioning
destroys the time accuracy, it can be applied to steady-state simulations only. To overcome this limitation, dual time-step-
ping technique may be employed [10]. In the past, numerous studies have been devoted to these topics; a complete review of
preconditioning techniques is given in [7–9,11].

As regards the set of dependent variables, it has been shown in [4] that the conservative incompressible formulation is
well defined only for the entropy variables and the primitive variables including pressure. It has also been shown that these
two sets of variables are best suited for solving practical problems, with the primitive variables being more accurate than the
entropy variables for low speed and incompressible flow computations. For these reasons the primitive variables are often
preferred for low Mach number computations [6,10,12,13] and they have also been used to develop numerical schemes well
suited for both compressible and incompressible flows.

In this context, we note that Schneider et al. [14] and Klein et al. [15], devised a numerical scheme for zero Mach number
computations based on conservative variables. In view of this the issue of what is the best choice of dependent variables for
solving flow problems ranging from very subsonic to supersonic speeds might not be considered as settled.

Finally, as reported in [11,16,17], efficient and accurate implementations of preconditioning techniques also require to
minimize spurious reflections at far-field boundaries and this can be achieved by setting suitable combinations of variables
at far-field boundaries.

In this paper we present a preconditioned DG discretization of the 2D compressible Euler equations suitable to compute
low Mach number inviscid flows. The conservative Euler equations are written in terms of primitive variables and iterated to
steady state using both explicit and implicit schemes. In the explicit case preconditioning affects both the time-derivative
terms of the governing equations, through the action of the Weiss and Smith preconditioning matrix [10], and the numerical
dissipation of the Roe’s Riemann solver used to compute the numerical flux (full preconditioning technique). In the implicit
case we have found that preconditioning only needs to be applied to the numerical flux function (flux preconditioning tech-
nique). Thus the implicit scheme could directly be used to compute unsteady low Mach number flows without resorting to
dual time-stepping techniques.

To the author’s knowledge a few papers have appeared in the literature describing DG solutions of low Mach number
flows and such papers do not report on using any form of preconditioning. Luo et al. [18] have performed numerical exper-
iments up to a Mach number of 10�2 while Feistauer and Kucera [19] have extended the simulation of compressible inviscid
flows to a Mach number of 10�4.

This paper aims at giving more insight on employing DG discretizations for low Mach number flows. In particular, we
consider the DG discretization of the Euler equations written in the most appropriate set of variables, we show that precon-
ditioning clearly improves both the accuracy and efficiency of the DG solvers, and, finally, we examine in detail the accuracy
of solutions for different topologies of computational grids.

The outline of the paper is as follows. In Section 2 we present the preconditioned form of the compressible Euler
equations using primitive variables. In Section 3 we describe the DG discretization of the governing equations, the boundary
conditions and the preconditioned numerical flux function. In Section 4 we give some detail on the explicit and implicit time-
stepping schemes. The performance of the numerical scheme is then demonstrated in Section 5 by computing an inviscid
flow around a NACA0012 airfoil for different low Mach numbers, grid topologies and degrees of polynomial approximation.
Finally, a few conclusions are drawn in Section 6.

2. Governing equations

The compressible Euler equations describe the pure convection of flow quantities in an inviscid fluid. In two space dimen-
sion they are given in strong and conservative form as follows
@w
@t
þr � F ¼ 0; ð1Þ
where w is the state vector of conservative variables, and F ¼ Fðf;gÞ is the inviscid flux vector given by
w ¼

q
qu

qv
qE

2
6664

3
7775; f ¼

qu

qu2 þ p

quv
quH

2
6664

3
7775; g ¼

qv
qvu

qv2 þ p

qvH

2
6664

3
7775:
Here, q is the fluid density, u and v are velocity components, p is the pressure and E is the total internal energy per unit mass.
The total enthalpy per unit mass, H, is given by H ¼ Eþ p=q, and, assuming the fluid satisfies the equation of state of a perfect
gas, the pressure is given by p ¼ ðc� 1Þq½E� ðu2 þ v2Þ=2�, where c is the ratio of specific heats of the fluid, given by c ¼ cp=cv .

Transforming the compressible Euler equations given in Eq. (1) from conservative variable to primitive variables we
obtain
P
@q
@t
þr � F ¼ 0; ð2Þ
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where the state vector q in primitive variables, and the transformation matrix P ¼ @w
@q is given by
q ¼

p

u

v
T

2
6664

3
7775; P ¼

qp 0 0 qT

qpu q 0 qT u

qpv 0 q qTv
qpH � 1 qu qv qT H þ qcp

0
BBB@

1
CCCA:
By assuming that the fluid obeys the perfect gas state equation, q can be calculated as q ¼ p=T and the derivatives of q are
given by � �
qp ¼
@q
@p

���
T¼const:

¼ 1=T; qT ¼
@q
@T

���
p¼const:

¼ �q=T:
In a second step the transformation matrix P in Eq. (2) is replaced by a preconditioning matrix C resulting in the following
preconditioned compressible Euler equations,
C
@q
@t
þ $ � F ¼ 0: ð3Þ
The matrix C used in the present work is the local preconditioning matrix of Weiss and Smith [10] written in the following
form: 0 1
C ¼

h 0 0 qT

hu q 0 qT u

hv 0 q qTv
hH � 1 qu qv qT H þ qcp

BBB@
CCCA; ð4Þ
where H is given by
H ¼ 1
U2

r

� qT

qcp

 !
:

Here, Ur is a reference velocity which, for an ideal gas, is defined as
Ur ¼
ec; if vj j < ec;

vj j; if ec < vj j < c;

c; if vj j > c;

8><
>: ð5Þ
where c is the acoustic speed and e is a small number included to prevent singularities at stagnation points. Choosing
e ¼ OðMÞ, the low Mach preconditioning ensures that the convective and acoustic wave speeds are of similar magnitude, pro-
portional to the flow speed [20].

In the next section we will show how preconditioning enters in the formulation of the numerical flux function in the nor-
mal direction at Gauss integration points on inter-element faces. Hence it is worthwhile introducing here the wave speeds of
the preconditioned Euler equations in the direction of the unit vector n, which are given by the eigenvalues of
C�1ð@f

@q n1 þ @g
@q n2Þ, where @f

@q and @g
@q are the inviscid flux Jacobians with respect to the primitive variables, and n1 and n2 are

the components of the unit vector n ¼ ðn1;n2ÞT . The propagation speeds in this direction are
k1 ¼ k2 ¼ un; k3 ¼ u0n þ c0; k4 ¼ u0n � c0;
where
un ¼ v � n; ð6Þ
u0n ¼ unð1� aÞ;

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2u2

n þ U2
r

q
;

a ¼ 1� bU2
r

2
; ð7Þ

b ¼ qp þ
qT

qCp

� �
;

qp ¼
@q
@p

����
T¼const:

:

For an ideal gas b ¼ 1=c2. At low speed as Ur ! 0; a! 1=2, and all the eigenvalues become of the same order as un. For
the non-preconditioned system ða ¼ 0;u0n ¼ un; c0 ¼ Ur ¼ cÞ;C reduces to the transformation matrix P between conservative
and primitive variables, and Eq. (3) becomes the conservative formulation of the Euler equations in terms of primitive
variables.
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We note, that all formulae above are given in non-dimensionalized variables based on the following reference values: the
reference length lr , density qr , pressure pr and constant gas Rr . Reference values for the other quantities are derived from
these by dimensional relationships.
3. The preconditioned DG discretization

Multiplying Eq. (3) by a vector-valued test function v and integrating by parts, we obtain the weak formulation:
Z
X

vTC
@q
@t

dx�
Z

X
rvT � Fdxþ

Z
@X

vT F � nds ¼ 0 8v 2 H1 Xð Þ ð8Þ
where X is the domain with boundary @X, and n is the unit outward normal vector. To discretize in space, we define Vp
h to be

the space of discontinuous vector-valued polynomials of degree p on a subdivision Th of the domain into non-overlapping
elements such that X ¼

S
j2Th

j. Thus, the solution and test function space is defined by
Vp
h ¼ v 2 L2 Xð Þ : vjj 2 Pp;j 2 Th

n o
;

where Pp is the space of polynomial functions of degree at most p. The discrete problem then takes the following form: find
qh 2 Vp

h such that
X
j�Th

Z
j

vT
hC
@qh

@t
dx�

Z
j
rvT

h � Fdxþ
Z
@jn@X

vþ
T

h Hi qþh ;q
�
h ;n

� �
dsþ

Z
@j\@X

vþ
T

h Hb qþh ;q
b
h;n

� �
ds

( )
¼ 0 ð9Þ
for all vh 2 Vp
h, where Hiðqþh ;q�h ;nÞ and Hbðqþh ;qb

h;nÞ are numerical flux functions defined on interior and boundary faces,
respectively. Hi takes into account the possible discontinuities of qh at element interfaces. On interior edges @j n @X, Hi de-
pends on the elements interior state qþh and on the neighbouring elements state q�h . On boundary edges @j \ @X, Hb depends
on the interior state qþh and a consistent boundary state qb

h. We note that Hb may be different from Hi.
We note that due to the quasi-linear form of the time-derivative term of Eq. (2) and due to the preconditioning (4) applied

an explicit time-stepping scheme based on (9) is not time-accurate nor conservative in space-time. However, having reached
a steady state solution the time derivatives vanish. In fact, for steady state solutions the numerical scheme (9) is conservative
which can be seen by setting vþh � 1 in (9).

The spatial DG discretization of Eq. (9) results in the following global system of equations:
MC
dQ
dt
þ R ¼ 0; ð10Þ
where Q and R are the global vectors of degrees of freedom (dof) and of residuals respectively, and MC stands for the dis-
cretization of the first integral of Eq. (9). Hence, MC is a block diagonal matrix where the block corresponding to one element
couples all the dof of all variables within the element (the coupling among dof of different variables is due to the action of C).

3.1. Boundary treatment

In the following we give some details on the boundary treatment. In particular, an appropriate representation of the pos-
sibly curved boundary geometry and an appropriate discretization of boundary conditions employed are essential for pre-
serving the numerical accuracy and improving the convergence speed of the solution process in the low Mach number limit.

3.1.1. Geometry representation
A high order accurate solution on relatively coarse grids can be obtained only if a corresponding high order approximation

of the geometry is employed. In this work, the geometric continuity of the element edges belonging to the boundary @X is
guaranteed by a mapping based on Lagrangian polynomial functions /jðnÞ and Lagrangian node coordinates xðjÞ and is given
by
x ¼
X

j

xðjÞ/j nð Þ 8n 2 ĵ; ð11Þ
where n is the independent variable on the reference element ĵ. Notice that the Lagrangian nodes are placed on the real
geometry of the boundary.

3.1.2. Boundary conditions
When @j belongs to @X the boundary fluxes, denoted by Hbðqþ;qb;nÞ, are chosen to weakly prescribe the boundary con-

ditions of the problem. Here, n is the unit outward normal vector, qþ is the interior state at the boundary and qb is computed
according to the conditions that must be satisfied on the boundary.
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� Far-field: At far-field a complete set of characteristic boundary conditions [21], and a set of simplified non-reflecting
boundary conditions [11] are employed for the non-preconditioned and the preconditioned DG scheme, respectively. In
particular, for the preconditioned scheme, at the inflow boundary the state qb has the same pressure as qþ, whereas
the velocity vector and the temperature is prescribed based on the freestream values. Conversely, at the outflow boundary,
the state qb has the same temperature and velocity vector as qþ, whereas the pressure is prescribed based on the free-
stream value. We remark that the simplified non-reflecting boundary conditions require a far-field boundary well far
away from the aerodynamic surface in order to get efficient and accurate solutions.

� Slip wall: The wall boundary condition employed is based on following boundary state:
pb ¼ pþ;

ub ¼ uþ � v � nð Þþn1; ð12Þ
vb ¼ vþ � v � nð Þþn2;

Tb ¼ Tþ;
where n1 and n2 are the components of the unit outward normal n ¼ ðn1;n2ÞT . The conditions imposed on the velocity com-
ponents ensure that the normal velocity component is zero on the boundary:
v � nð Þb ¼ 0:
In this case the wall boundary fluxes are computed as follows:
Hb qþh ;q
b
h;n

� �
¼ F qb

h

� �
� n:
This means that the fluxes on the wall boundary are computed in the same manner for both the preconditioned and the non-
preconditioned DG schemes.

3.2. Flux difference splitting

The numerical flux Hiðqþ;q�;nÞ appearing in Eq. (9) is computed based on a preconditioning of the artificial dissipation
term of the Roe’s approximate Riemann solver [22]. In terms of primitive quantities q, the value of Hi at each face is given by
Hi qþ;q�;nð Þ ¼ 1
2

FðqþÞ � nþ Fðq�Þ � n� ~FC qþ;q�;nð Þ
� 	

; ð13Þ
where ~FC is given by
~C j ~AC j Dq: ð14Þ
Here, Dq ¼ q� � qþ and the matrix j ~AC j is defined in terms of the preconditioned eigenvalues and eigenvectors by
j ~AC j¼ ~TC j ~KC j ~T�1
C :
The symbol � denotes that the matrices are computed using the Roe-averaged variables [23] and the subscript C that the
diagonal matrix of eigenvalues and the modal matrix are derived from the preconditioned system, where ~KC is the diagonal
matrix of the preconditioned eigenvalues, and ~TC diagonalizes the matrix ~C�1ð@F

@q � nÞ. We note, that for the non-precondi-
tioned system, Eq. (13) reduces to the standard Roe’s flux difference splitting.

4. Time discretization of the Euler equations

4.1. Explicit time-stepping scheme

The semidiscrete system Eq. (10) is discretized in time based on an explicit multistage time-stepping method. In order to
overcome the restrictive explicit CFL stability limit, both the local time-stepping and the preconditioning techniques have
been used to improve the convergence speed to steady state solutions.

The solution is advanced from time t to time t þ Dt with an s-stage SSP Runge–Kutta scheme [24], given by
Q 0 ¼ Q t ;

Q i ¼
Xi�1

k¼0

aikQ k þ bikDtM�1
C RðQ kÞ i ¼ 1;2; :::; s; ð15Þ

Q tþDt ¼ Q s;
where i is the stage counter for the s-stage scheme and aik and bik are the multistage coefficients for the ith stage.
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The local time step Dt on each element j is computed by considering the CFL stability condition:
Dt ¼ CFL � j j j
Kx

c þKy
c

;

where the preconditioned convective spectral radii Kx
c and Ky

c are defined as
Kx
c ¼ �u0j j þ �c0x

� �
DSx;

Ky
c ¼ �v 0j j þ �c0y

� 	
DSy:
The variables DSx and DSy represent the projections of the element j onto the x and y axis, respectively, whereas �u0; �c0x and
�v 0; �c0y are obtained applying Eq. (7) along the x and y directions and using the mean values of the flow quantities on each
element j.

4.2. Implicit time-stepping scheme

We have found that the implicit time-stepping scheme can be used to compute efficiently and accurately low Mach num-
ber flows even in absence of time-derivative preconditioning. Hence, in Eq. (9) the matrix C reduces to the transformation
matrix between conservative and primitive variables, P, and the DG space discretization results in the following global sys-
tem of equations:
MP
dQ
dt
þ R ¼ 0: ð16Þ
The implicit backward Euler time discretization of Eq. (16) can be written as
MP

Dt
þ @Rn

@Q


 �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

B

DQ n ¼ �Rn; ð17Þ
where DQ n ¼ Q nþ1 � Q n; @Rn

@Q is the Jacobian matrix of the DG space discretization and B denotes the global system matrix.
The matrix B can be regarded as an Nj � Nj block sparse matrix where Nj is the number of elements in Th and the rank of

each block is M � Nj
dof , where Nj

dof is the number of dof for each of the M primitive variables in the generic element j. Thanks
to the DG discretization here adopted the dof of a generic element j are only coupled with those of the neighbouring ele-
ments and the number of nonzero blocks for each (block) row j of the matrix B is therefore equal to the number of elements
surrounding the element j plus one.

The Jacobian matrix of the DG discretization has been computed analytically (except for the computation of the dissipa-
tive part of the numerical flux that has been computed numerically) without any approximation and, using very large time
steps, the method can therefore achieve quadratic convergence in the computation of steady state solutions. For the back-
ward Euler scheme and in the limit Dt !1 Eq. (17) is in fact identical to one iteration of the Newton method applied to the
steady discrete problem.

Finally, we mention that to solve Eq. (17) we can use either direct or iterative linear solvers. For all the computations pre-
sented below we have used the GMRES iterative solver available in the PETSc [25] library. By default this solver employs the
ILU(0) preconditioning and in the following the GMRES solver is meant to be used with ILU(0) preconditioning for the com-
putations performed with and without low Mach number preconditioning.

5. Numerical results

In this section, we present some numerical results demonstrating the performance of the proposed preconditioned DG
discretization. To this end, we consider an inviscid flow past a NACA0012 airfoil at zero angle of attack comparing the DG
discretizations with and without preconditioning. DG solutions on different grids, for different low Mach numbers
Fig. 1. Computational grids.
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(M ¼ 10�1;M ¼ 10�2 and M ¼ 10�3) and using linear (P1), quadratic (P2) and cubic (P3) elements are performed. Two grid
topologies (quadrangular and triangular) are used in order to investigate the behaviour of both the standard and the precon-
ditioned DG method for different element shapes. Fig. 1 shows the computational grids. The quadrangular grid is a C-type
grid with 1792 elements, and the triangular grid consists of the triangles obtained by splitting each quadrangle in two parts.
The distance of the far-field boundary from the profile is about 55 chords. All computations are performed in double preci-
sion, storing 16 significant digits.

The computational results are organized in two subsections, one focusing on the convergence of the residuals and the
other on the accuracy of the converged solutions. The convergence speed of the solution process is presented in terms of
the normalized L2 norm of the residuals versus the number of iterations and versus the CPU time. The accuracy of the con-
verged solutions is analyzed both qualitatively and quantitatively. First, the normalized pressure fields are presented for a
qualitative comparison. Then, for the quantitative analysis, the scaling of computed pressure fluctuations as the Mach num-
ber reduces is compared with the M2 theoretical scaling, and the computed drag coefficients are compared with the theo-
retical one which is zero for the subsonic inviscid flow considered.

5.1. Effects of preconditioning on convergence speed

The convergence histories are shown only for the quadrangular grid as similar histories are obtained on the triangular
grid. The results are presented first for the full preconditioning approach and then for the flux preconditioning technique.
Fig. 2. History of the nonlinear residuals versus the number of iteration steps for the quadrangular grid. M ¼ 10�1 (left column), M ¼ 10�2 (middle column)
and M ¼ 10�3 (right column). Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.
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5.1.1. Explicit time-stepping results
In Fig. 2 we compare the residual histories with and without preconditioning. The plots show that the preconditioning

technique leads to an acceleration of convergence in comparison to the non-preconditioned solution. For a given polynomial
approximation, the convergence speed without preconditioning reduces as the Mach number approaches zero, while it is
independent of the Mach number with preconditioning. For a given Mach number, the efficiency of both the preconditioned
and the non-preconditioned explicit methods reduces due to the CFL stability condition. Considering the fully converged
solutions, we see that, for a given polynomial degree, the lower the Mach number, the smaller the preconditioned residual
decay. This is due to round-off errors and resulting cancellation errors that have a larger effect on the preconditioned scheme
than on the non-preconditioned one as it is evident for M ¼ 10�1 and quadratic elements, see also [26]. This behaviour can be
explained considering that with preconditioning the settings used to compute the artificial dissipation of Roe’s flux cause
truncation error to grow more than the corresponding non-preconditioned one. Notwithstanding, in all cases the precondi-
tioned residual decays were sufficient enough to obtain accurate solutions. In addition, the oscillations that appear in the
convergence histories are due to the vorticity produced at the leading and at the trailing edge during the wave reflections
[27].

The effectiveness of preconditioning in accelerating the convergence is illustrated in Fig. 3 where we compare the con-
vergence histories of a preconditioned computation at M ¼ 10�3 and of a subsonic computation at M ¼ 0:4 which does
not require preconditioning. The results clearly show that preconditioning effectively recovers the same (or even better) effi-
ciency of a classical TVD Runge–Kutta scheme, subject to the typical CFL condition for high-order DG discretizations, applied
to a well-conditioned problem.

5.1.2. Implicit time-stepping results
Fig. 4 compares the history of residuals versus the number of ‘‘Newton” iteration steps of Eq. (17) with and without flux

preconditioning. We remark that the graphs of Fig. 4 merely show the effect of the fixed GMRES parameters (number of Kry-
lov-subspace vectors = 60, number of restarts = 1 and relative tolerance to stop iterative solution = 10�6) on the convergence
of the global ‘‘Newton” iterations and if these parameters are enough to ensure quadratic convergence of residuals.

The plots show that both the non-preconditioned and the preconditioned implicit schemes converge. Nevertheless, the
use of non-preconditioned Jacobians shows a deterioration in the convergence rate at large Courant numbers as the Mach
numbers gets smaller. We notice that the preconditioned scheme always displays quadratic convergence, whilst this is
not the case for the non-preconditioned scheme with the same GMRES parameters. The effect is appreciable at M ¼ 10�2

and more evident at M ¼ 10�3. Hence, with the chosen GMRES parameters, the flux preconditioning technique allows to re-
duce the number of iterations needed to reach the full convergence of each variable as compared to the non-preconditioned
solutions. This is due to the effect of preconditioning on the linear system matrix through the Jacobian of residuals. In par-
ticular, with preconditioning the full convergence of the residuals was reached quadratically in about 10 iterations indepen-
dently of both Mach number and polynomial degree.

Finally, the comparison between the residual decay of each variable at M ¼ 10�1 and at M ¼ 10�2 as well as at M ¼ 10�2

and at M ¼ 10�3 shows that, whereas all the residual decays of the non-preconditioned DG method reduce of OðMÞ, the pre-
conditioned residual decays of velocity components and thermodynamic variables reduce of OðMÞ and OðM2Þ, respectively,
when Mach number tends to zero, because of round-off errors. The round-off errors can be alleviated by introducing the
gauge-pressure [6].

Fig. 5 compares the history of residuals versus CPU time (seconds), computed on the quadrangular grid with and without
flux preconditioning. Overall, the plots confirm that preconditioning improves the efficiency of the implicit solver. For a gi-
ven polynomial approximation, the convergence rate without preconditioning reduces as the Mach number goes to zero,
while it is almost independent of the Mach number with preconditioning. Furthermore, for a given Mach number, using
the preconditioned Roe’s flux, the overhead, in terms of CPU time, significantly reduces as the polynomial degree increases
Fig. 3. History of nonlinear residuals for M ¼ 10�3 and M ¼ 0:4 with and without preconditioning, respectively. Linear (P1 left), quadratic (P2 middle) and
cubic (P3 right) elements.



Fig. 4. History of residuals versus number of iterations for the quadrangular grid. M ¼ 10�1 (left column), M ¼ 10�2 (middle column) and M ¼ 10�3 (right
column). Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.
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in comparison to the non-preconditioned solution. This effect is greatest at lower Mach number and reduces as the Mach
number gets larger.

Fig. 6 summarizes the performance of the GMRES solver with (right column) and without (left column) low Mach number
preconditioning. The graphs show the results for the P1; P2 and P3 solutions at M ¼ 10�2. Similar results hold also for
M ¼ 10�1 and M ¼ 10�3. The plots on the top row show the number of GMRES iterations (open symbols) and the logarithm
of CFL number (solid symbols), while those on the bottom row show the ratio between the L2 norms of the last and the first
residual of the GMRES iterative solution. The quantity on the X-axis is the number of non-linear iterations. The graphs of
Fig. 6 suggest that (i) increasing the CFL number the computations performed without low Mach number preconditioning
rapidly use up the maximum number of GMRES iterations without satisfying the required six-order drop of residuals, and
that the low Mach number preconditioned solutions require somewhat less than 120 GMRES iterations to solve the linear
system within each time step, even for the highest CFL numbers. Moreover we notice that the different behaviour of the
low Mach number preconditioned and non-preconditioned solutions is even more evident for the lowest Mach number. Fi-
nally, we mention that the cost to compute the analytical Jacobian with respect to the computational cost of a full time step
using 120 GMRES iterations is around 20%, 28% and 35% for the P1, P2 and P3 solutions, respectively.

5.2. Effects of preconditioning on the solution accuracy

In this section we examine the accuracy of the (fully) converged solutions. We observe that, whilst the time-derivative
preconditioning matrix C basically improves the convergence speed of low Mach number computations, the solution



Fig. 5. History of residuals versus CPU time for the quadrangular grid. M ¼ 10�1 (left column), M ¼ 10�2 (middle column) and M ¼ 10�3 (right column).
Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.
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accuracy is essentially determined by the preconditioning of the Riemann solver. The two preconditioning strategies here
presented use the same flux difference splitting scheme, and thereby give the same results in terms of accuracy of solution.

5.2.1. Normalized pressure
In the following we present the contour plots of the normalized pressure, defined as pnorm ¼ ðp� pminÞ=ðpmax � pminÞ, com-

puted on the quadrangular and triangular grids.
We begin by showing the results on the quadrangular grid. Fig. 7 shows the normalized pressure isolines of the non-pre-

conditioned solutions at M ¼ 10�1; M ¼ 10�2 and M ¼ 10�3, for P1; P2 and P3 elements. Fig. 8 shows the corresponding re-
sults of the preconditioned solutions but only at M ¼ 10�3, as the preconditioned results are independent of the Mach
number, as will be shown in the next section.

Overall, from Figs. 7 and 8 we see that the preconditioned solutions are more accurate than the corresponding non-pre-
conditioned ones. In particular, at M ¼ 10�1 (left column), the P1 solution is inaccurate without preconditioning. This loss of
accuracy is less evident using P2 elements, whereas for P3 elements there are no visible differences in terms of normalized
pressure isolines. At M ¼ 10�2 (middle column) at least P3 elements are required to obtain an acceptable level of accuracy
without preconditioning, whereas at M ¼ 10�3 (left column) there is a clear difference between the preconditioned and
the non-preconditioned solutions even if P3 elements are used. Hence, for a given polynomial degree, the quality of the
non-preconditioned solution becomes worse in comparison to the corresponding preconditioned one as the Mach number
reduces. Furthermore, for a given Mach number, the higher the polynomial degree, the lower is the difference between



Fig. 6. Behaviour of GMRES solver with (right column) and without (left column) low Mach number preconditioning.
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the preconditioned and the non-preconditioned solutions. In such cases the preconditioning allows to significantly reduce
the computational effort.

Figs. 9 and 10 show the isolines of the normalized pressure for the triangular grid with and without preconditioning,
respectively. Overall, it is worth noting that the DG discretization on triangular grid yields remarkably accurate solutions
at low Mach even without preconditioning. In particular, the preconditioned and the non-preconditioned contours of nor-
malized pressure are almost indistinguishable using P2 and P3 elements, whereas some differences can be seen in the P1

solutions. However, we see that the DG discretization on the triangular grid avoids the accuracy degradation of the solutions
as the Mach number reduces even for the lowest order approximation.

These results cannot be explained only by the doubled number of elements in the triangular grid. In fact in Fig. 11 we see
that a computation at M ¼ 10�3 on a globally refined quadrangular grid with 7168 elements produces results which are still
far worse than the corresponding results on the triangular grid with half the number of elements, shown in Fig. 9 (right col-
umn). Nevertheless, the difference in accuracy between results computed on the two grid types reduces as the polynomial
degree increases.

The origin of the inaccuracy of the non-preconditioned solutions can be understood looking in detail at the normalized pres-
sure contours around the leading edge of the airfoil. In Fig. 12 we compare the solutions for M ¼ 10�3 computed on the refined
quadrangular grid and the triangular grid, using P1; P2 and P3 elements. This figure clearly shows that approaching the stagna-
tion point the solution degrades because in this region the poorly scaled dissipation term of the Roe’s Riemann solver is badly
affected by the magnitude of inter-element jumps. This effect reduces by increasing the degree of polynomial approximation.
More importantly, and consistently with the results of Fig. 9, the loss of accuracy around the leading edge is much higher in the
solutions on the quadrangular grid. The marked influence of the geometrical shape of the elements on the accuracy of the Roe’s
flux in the low Mach number limit is an issue that needs deeper investigation. The asympotic analysis recently performed by
Rieper and Bader [28] for the first-order Roe scheme might indicate that low order DG schemes face the same problems as
the standard finite volume upwind schemes: at low Mach number they only work on triangular elements.

5.2.2. Pressure fluctuations
Fig. 13 shows the pressure fluctuations ðpmax � pminÞ=pmax versus the Mach number for linear, quadratic and cubic

elements on quadrangular (left) and triangular (right) grids without preconditioning. From the plots, we observe that the
pressure fluctuations on the quadrangular grid do not scale with the square of the Mach number as they should do. The accu-
racy of solution deteriorates as the Mach number goes to zero. Nevertheless, the high order approximation allows to obtain
more accurate results. In contrast to the lack of accuracy shown for the quadrangular grid, the pressure fluctuations on the
triangular grid (right) are proportional to the square of the Mach number. In particular, there is a very good agreement
between numerical and theoretical results using P2 and P3 elements, whereas the P1 pressure fluctuations are slightly
less accurate. Fig. 14 shows the pressure fluctuations ðpmax � pminÞ=pmax versus the Mach number with preconditioning.
Comparing corresponding plots in Figs. 13 and 14 we see that the preconditioning improves the accuracy of the solutions,



Fig. 8. Contours of normalized pressure with preconditioning for the quadrangular grid at M ¼ 10�3. Linear (P1 left), quadratic (P2 middle) and cubic (P3

right) elements.

Fig. 7. Contours of normalized pressure without preconditioning for the quadrangular grid. M ¼ 10�1 (left column), M ¼ 10�2 (middle column) and
M ¼ 10�3 (right column). Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.
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especially on the quadrangular grid. In perfect agreement with the theory, the pressure fluctuations scale exactly with the
square of the Mach number for all spatial discretizations.

5.2.3. Drag coefficients
In this section we evaluate the accuracy of the preconditioned and non-preconditioned solutions in terms of computed

drag coefficients. In Tables 1 and 2 we collect the drag coefficients computed at different Mach numbers (M ¼ 10�1;10�2



Fig. 10. Contours of normalized pressure with preconditioning for triangular grid at M ¼ 10�3. Linear (P1 left), quadratic (P2 middle) and cubic (P3 right)
elements.

Fig. 9. Contours of normalized pressure without preconditioning for triangular grid. M ¼ 10�1 (left column), M ¼ 10�2 (middle column) and M ¼ 10�3 (right
column). Linear (P1 top row), quadratic (P2 middle row) and cubic (P3 bottom row) elements.
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and 10�3) for P1; P2 and P3 elements, using the preconditioned and non-preconditioned DG schemes. In particular, Table 1
refers to the quadrangular grid while Table 2 refers to the triangular grid.

For both spatial discretizations the preconditioning always improves the accuracy of solution, making the drag coeffi-
cients independent of the Mach number. Some differences are present at M ¼ 10�1 due to compressibility effects [29]. Fur-
thermore the non-preconditioned drag coefficients show that in the low Mach number limit accurate solutions on a
relatively coarse grid can be obtained only if a higher order polynomial discretization is employed.



Fig. 11. Contours of normalized pressure without preconditioning on the refined quadrangular grid at M ¼ 10�3. Linear (P1 left), quadratic (P2 middle) and
cubic (P3 right) elements.

Fig. 12. Contours of normalized pressure without preconditioning at M ¼ 10�3. Refined quadrangular grid (top row), triangular grid (bottom row). Linear
(P1 left column), quadratic (P2 middle column) and cubic (P3 right column) elements.

Fig. 13. Pressure fluctuations versus Mach number for linear (P1), quadratic (P2) and cubic (P3) elements without preconditioning. Quadrangular grid (left),
triangular grid (right). For comparison, the theoretical behaviour, M2, is represented by a solid line.
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Finally, we observe that the improvement of the accuracy due to the preconditioning is more marked for the computa-
tions performed on the quadrangular grid. In this respect, it is worth noting that, according to results shown in the previous
section, the DG discretization on the triangular grid yields drag coefficients remarkably accurate and almost independent of



Fig. 14. Pressure fluctuations versus Mach number for linear (P1), quadratic (P2) and cubic (P3) elements with preconditioning. Quadrangular grid (left),
triangular grid (right). For comparison, the theoretical behaviour, M2, is represented by a solid line.

Table 1
Drag coefficients on the quadrangular grid.

Quadrangular grid

M ¼ 10�1 M ¼ 10�2 M ¼ 10�3

Non-prec. Prec. Non-prec. Prec. Non-prec. Prec.

P1 4:667� 10�3 1:302� 10�3 2:494� 10�2 1:302� 10�3 1:270� 10�1 1:301� 10�3

P2 1:280� 10�4 6:621� 10�5 4:540� 10�4 6:641� 10�5 2:225� 10�3 6:642� 10�5

P3 2:763� 10�5 1:658� 10�5 3:759� 10�5 1:662� 10�5 6:809� 10�5 1:662� 10�5

Table 2
Drag coefficients on the triangular grid.

Triangular grid

M ¼ 10�1 M ¼ 10�2 M ¼ 10�3

Non-prec. Prec. Non-prec. Prec. Non-prec. Prec.

P1 7:183� 10�4 4:979� 10�4 8:026� 10�4 4:988� 10�4 8:130� 10�4 4:988� 10�4

P2 3:290� 10�5 2:701� 10�5 3:472� 10�5 2:710� 10�5 3:490� 10�5 2:710� 10�5

P3 1:038� 10�5 7:511� 10�6 1:102� 10�5 7:519� 10�6 1:108� 10�5 7:519� 10�6
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the Mach number even without preconditioning. Notwithstanding, the computational effort needed for the convergence of
the drag coefficient using the preconditioning algorithm is significantly lower than that without preconditioning.

6. Conclusions

In this work we have presented the main features of a preconditioned DG discretization for inviscid low Mach number
computations. The method solves the conservative Euler equations in terms of primitive variables using both an explicit
and an implicit scheme for the temporal discretization. The algorithm employs the low Mach number preconditioning of
both the time-derivative term of the governing equations and of the numerical flux function using the explicit time integra-
tion, and the preconditioning of numerical flux function only for the implicit scheme. Numerical results have been presented
solving the 2D compressible Euler equations at low Mach numbers. Computations were performed at different low Mach
numbers using linear, quadratic and cubic elements on quadrangular and triangular grids. In all cases, the method signifi-
cantly improves the speed of convergence. In particular, the implicit scheme turns out to be efficient using just the modified
numerical flux function, and then it could also be used for time accurate computations. Furthermore, it has been shown that
preconditioning enhances the accuracy of the numerical solution. In particular, the computations indicate that the precon-
ditioning of the upwind numerical flux function is mandatory to obtain accurate solutions on a relatively coarse quadran-
gular grid. In contrast to that, the DG discretization on the triangular grid yields remarkably accurate solutions even
without preconditioning. A theoretical investigation of these results is the subject of ongoing work.
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